Columbia University
Abstract:We propose and compare various sentence selection strategies for active learning for the task of detecting mentions of entities. The best strategy employs the sum of confidences of two statistical classifiers trained on different views of the data. Our experimental results show that, compared to the random selection strategy, this strategy reduces the amount of required labeled training data by over 50% while achieving the same performance. The effect is even more significant when only named mentions are considered: the system achieves the same performance by using only 42% of the training data required by the random selection strategy.
Abstract:We present a multi-document summarizer, called MEAD, which generates summaries using cluster centroids produced by a topic detection and tracking system. We also describe two new techniques, based on sentence utility and subsumption, which we have applied to the evaluation of both single and multiple document summaries. Finally, we describe two user studies that test our models of multi-document summarization.