Abstract:Unsupervised representation learning for dynamic graphs has attracted a lot of research attention in recent years. Compared with static graphs, dynamic graphs are the integrative reflection of both the temporal-invariant or stable characteristics of nodes and the dynamic-fluctuate preference changing with time. However, existing dynamic graph representation learning methods generally confound these two types of information into a shared representation space, which may lead to poor explanation, less robustness, and a limited ability when applied to different downstream tasks. Taking the real dynamic graphs of daily capital transactions on Tencent as an example, the learned representation of the state-of-the-art method achieves only 32% accuracy in predicting temporal-invariant characteristics of users like annual income. In this paper, we introduce a novel temporal invariance-fluctuation disentangled representation learning framework for dynamic graphs, namely DyTed. In particular, we propose a temporal-invariant representation generator and a dynamic-fluctuate representation generator with carefully designed pretext tasks to identify the two types of representations in dynamic graphs. To further enhance the disentanglement or separation, we propose a disentanglement-aware discriminator under an adversarial learning framework. Extensive experiments on Tencent and five commonly used public datasets demonstrate that the different parts of our disentangled representation can achieve state-of-the-art performance on various downstream tasks, as well as be more robust against noise, and is a general framework that can further improve existing methods.