Abstract:This study investigates the privacy risks associated with text embeddings, focusing on the scenario where attackers cannot access the original embedding model. Contrary to previous research requiring direct model access, we explore a more realistic threat model by developing a transfer attack method. This approach uses a surrogate model to mimic the victim model's behavior, allowing the attacker to infer sensitive information from text embeddings without direct access. Our experiments across various embedding models and a clinical dataset demonstrate that our transfer attack significantly outperforms traditional methods, revealing the potential privacy vulnerabilities in embedding technologies and emphasizing the need for enhanced security measures.
Abstract:Local feature extractors are the cornerstone of many computer vision tasks. However, their vulnerability to adversarial attacks can significantly compromise their effectiveness. This paper discusses approaches to attack sophisticated local feature extraction algorithms and models to achieve two distinct goals: (1) forcing a match between originally non-matching image regions, and (2) preventing a match between originally matching regions. At the end of the paper, we discuss the performance and drawbacks of different patch generation methods.