Abstract:In this study, we analyze texts of Reddit posts written by students of four major Canadian universities. We gauge the emotional tone and uncover prevailing themes and discussions through longitudinal topic modeling of posts textual data. Our study focuses on four years, 2020-2023, covering COVID-19 pandemic and after pandemic years. Our results highlight a gradual uptick in discussions related to mental health.
Abstract:We report results of a longitudinal sentiment classification of Reddit posts written by students of four major Canadian universities. We work with the texts of the posts, concentrating on the years 2020-2023. By finely tuning a sentiment threshold to a range of [-0.075,0.075], we successfully built classifiers proficient in categorizing post sentiments into positive and negative categories. Noticeably, our sentiment classification results are consistent across the four university data sets.