Abstract:To ensure the safety of railroad operations, it is important to monitor and forecast track geometry irregularities. A higher safety requires forecasting with a higher spatiotemporal frequency. For forecasting with a high spatiotemporal frequency, it is necessary to capture spatial correlations. Additionally, track geometry irregularities are influenced by multiple exogenous factors. In this study, we propose a method to forecast one type of track geometry irregularity, vertical alignment, by incorporating spatial and exogenous factor calculations. The proposed method embeds exogenous factors and captures spatiotemporal correlations using a convolutional long short-term memory (ConvLSTM). In the experiment, we compared the proposed method with other methods in terms of the forecasting performance. Additionally, we conducted an ablation study on exogenous factors to examine their contribution to the forecasting performance. The results reveal that spatial calculations and maintenance record data improve the forecasting of the vertical alignment.