Abstract:This study presents a novel approach for modeling and simulating human-vehicle interactions in order to examine the effects of automated driving systems (ADS) on driving performance and driver control workload. Existing driver-ADS interaction studies have relied on simulated or real-world human driver experiments that are limited in providing objective evaluation of the dynamic interactions and control workloads on the driver. Our approach leverages an integrated human model-based active driving system (HuMADS) to simulate the dynamic interaction between the driver model and the haptic-based ADS during a vehicle overtaking task. Two driver arm-steering models were developed for both tense and relaxed human driver conditions and validated against experimental data. We conducted a simulation study to evaluate the effects of three different haptic shared control conditions (based on the presence and type of control conflict) on overtaking task performance and driver workloads. We found that No Conflict shared control scenarios result in improved driving performance and reduced control workloads, while Conflict scenarios result in unsafe maneuvers and increased workloads. These findings, which are consistent with experimental studies, demonstrate the potential for our approach to improving future ADS design for safer driver assistance systems.