Abstract:A wireless communication system is studied that operates in the presence of multiple reconfigurable intelligent surfaces (RISs). In particular, a multi-operator environment is considered where each operator utilizes an RIS to enhance its communication quality. Although out-of-band interference does not exist (since each operator uses isolated spectrum resources), RISs controlled by different operators do affect the system performance of one another due to the inherently rapid phase shift adjustments that occur on an independent basis. The system performance of such a communication scenario is analytically studied for the practical case where discrete-only phase shifts occur at RIS. The proposed framework is quite general since it is valid under arbitrary channel fading conditions as well as the presence (or not) of the transceiver's direct link. Finally, the derived analytical results are verified via numerical and simulation trial as well as some novel and useful engineering outcomes are manifested.
Abstract:Level crossing rate (LCR) is a well-known statistical tool that is related to the duration of a random stationary fading process \emph{on average}. In doing so, LCR cannot capture the behavior of \emph{extremely rare} random events. Nonetheless, the latter events play a key role in the performance of ultra-reliable and low-latency communication systems rather than their average (expectation) counterparts. In this paper, for the first time, we extend the notion of LCR to address this issue and sufficiently characterize the statistical behavior of extreme maxima or minima. This new indicator, entitled as extreme LCR (ELCR), is analytically introduced and evaluated by resorting to the extreme value theory and risk assessment. Capitalizing on ELCR, some key performance metrics emerge, i.e., the maximum outage duration, minimum effective duration, maximum packet error rate, and maximum transmission delay. They are all derived in simple closed-form expressions. The theoretical results are cross-compared and verified via extensive simulations whereas some useful engineering insights are manifested.
Abstract:A new era in ICT has begun with the evolution of Next Generation Networks (NGNs) and the development of human-centric applications. Ultra-low latency, high throughput, and high availability are a few of the main characteristics of modern networks. Network Providers (NPs) are responsible for the development and maintenance of network infrastructures ready to support the most demanding applications that should be available not only in urban areas but in every corner of the earth. The NPs must collaborate to offer high-quality services and keep their overall cost low. The collaboration among competitive entities can in principle be regulated by a trusted 3rd party or by a distributed approach/technology which can guarantee integrity, security, and trust. This paper examines the use of blockchain technology for resource management and negotiation among NPs and presents the results of experiments conducted in a dedicated real testbed. The implementation of the resource management mechanism is described in a Smart Contract (SC) and the testbeds use the Raft and the IBFT consensus mechanisms respectively. The goal of this paper is two-fold: to assess its performance in terms of transaction throughput and latency so that we can assess the granularity at which this solution can operate (e.g. support resource re-allocation among NPs on micro-service level or not) and define implementation-specific parameters like the consensus mechanism that is the most suitable for this use case based on performance metrics.