Abstract:Referring video object segmentation aims to segment objects within a video corresponding to a given text description. Existing transformer-based temporal modeling approaches face challenges related to query inconsistency and the limited consideration of context. Query inconsistency produces unstable masks of different objects in the middle of the video. The limited consideration of context leads to the segmentation of incorrect objects by failing to adequately account for the relationship between the given text and instances. To address these issues, we propose the Multi-context Temporal Consistency Module (MTCM), which consists of an Aligner and a Multi-Context Enhancer (MCE). The Aligner removes noise from queries and aligns them to achieve query consistency. The MCE predicts text-relevant queries by considering multi-context. We applied MTCM to four different models, increasing performance across all of them, particularly achieving 47.6 J&F on the MeViS. Code is available at https://github.com/Choi58/MTCM.
Abstract:With the rapid advancement in cyber-physical systems, the increasing number of sensors has significantly complicated manual monitoring of system states. Consequently, graph-based time-series anomaly detection methods have gained attention due to their ability to explicitly represent relationships between sensors. However, these methods often apply a uniform source node representation across all connected target nodes, even when updating different target node representations. Moreover, the graph attention mechanism, commonly used to infer unknown graph structures, could constrain the diversity of source node representations. In this paper, we introduce the Edge Conditional Node-update Graph Neural Network (ECNU-GNN). Our model, equipped with an edge conditional node update module, dynamically transforms source node representations based on connected edges to represent target nodes aptly. We validate performance on three real-world datasets: SWaT, WADI, and PSM. Our model demonstrates 5.4%, 12.4%, and 6.0% higher performance, respectively, compared to best F1 baseline models.