Abstract:The advancement of large language models (LLMs) has opened new frontiers in natural language processing, particularly in specialized domains like healthcare. In this paper, we propose the Incremental Curriculum-Based Fine-Tuning (ICFT) framework to enhance the generative capabilities of medical large language models (MLLMs). ICFT combines curriculum-based learning, dual-stage memory coordination, and parameter-efficient fine-tuning to enable a progressive transition from general linguistic knowledge to strong domain-specific expertise. Experimental results across diverse medical NLP tasks, including question answering, preference classification, and response generation, demonstrate that ICFT consistently outperforms state-of-the-art baselines, achieving improvements in both accuracy and efficiency. Further analysis reveals the framework's ability to generalize to unseen data, reduce errors, and deliver diverse, contextually relevant medical responses. These findings establish ICFT as a robust and scalable solution for adapting LLMs to the medical domain, offering practical benefits for real-world healthcare applications.
Abstract:Few-shot learning in medical image classification presents a significant challenge due to the limited availability of annotated data and the complex nature of medical imagery. In this work, we propose Adaptive Vision-Language Fine-tuning with Hierarchical Contrastive Alignment (HiCA), a novel framework that leverages the capabilities of Large Vision-Language Models (LVLMs) for medical image analysis. HiCA introduces a two-stage fine-tuning strategy, combining domain-specific pretraining and hierarchical contrastive learning to align visual and textual representations at multiple levels. We evaluate our approach on two benchmark datasets, Chest X-ray and Breast Ultrasound, achieving state-of-the-art performance in both few-shot and zero-shot settings. Further analyses demonstrate the robustness, generalizability, and interpretability of our method, with substantial improvements in performance compared to existing baselines. Our work highlights the potential of hierarchical contrastive strategies in adapting LVLMs to the unique challenges of medical imaging tasks.