Abstract:In recent years, surrogate models based on deep neural networks (DNN) have been widely used to solve partial differential equations, which were traditionally handled by means of numerical simulations. This kind of surrogate models, however, focuses on global interpolation of the training dataset, and thus requires a large network structure. The process is both time consuming and computationally costly, thereby restricting their use for high-fidelity prediction of complex physical problems. In the present study, we develop a neural network with local converging input (NNLCI) for high-fidelity prediction using unstructured data. The framework utilizes the local domain of dependence with converging coarse solutions as input, which greatly reduces computational resource and training time. As a validation case, the NNLCI method is applied to study inviscid supersonic flows in channels with bumps. Different bump geometries and locations are considered to benchmark the effectiveness and versability of the proposed approach. Detailed flow structures, including shock-wave interactions, are examined systematically.
Abstract:Training deep neural networks for classification often includes minimizing the training loss beyond the zero training error point. In this phase of training, a "neural collapse" behavior has been observed: the variability of features (outputs of the penultimate layer) of within-class samples decreases and the mean features of different classes approach a certain tight frame structure. Recent works analyze this behavior via idealized unconstrained features models where all the minimizers exhibit exact collapse. However, with practical networks and datasets, the features typically do not reach exact collapse, e.g., because deep layers cannot arbitrarily modify intermediate features that are far from being collapsed. In this paper, we propose a richer model that can capture this phenomenon by forcing the features to stay in the vicinity of a predefined features matrix (e.g., intermediate features). We explore the model in the small vicinity case via perturbation analysis and establish results that cannot be obtained by the previously studied models. For example, we prove reduction in the within-class variability of the optimized features compared to the predefined input features (via analyzing gradient flow on the "central-path" with minimal assumptions), analyze the minimizers in the near-collapse regime, and provide insights on the effect of regularization hyperparameters on the closeness to collapse. We support our theory with experiments in practical deep learning settings.