Abstract:Swarm Intelligence (SI) is a natural phenomenon that enables biological groups to amplify their combined intellect by forming real-time systems. Artificial Swarm Intelligence (or Swarm AI) is a technology that enables networked human groups to amplify their combined intelligence by forming similar systems. In the past, swarm-based methods were constrained to narrowly defined tasks like probabilistic forecasting and multiple-choice decision making. A new technology called Conversational Swarm Intelligence (CSI) was developed in 2023 that amplifies the decision-making accuracy of networked human groups through natural conversational deliberations. The current study evaluated the ability of real-time groups using a CSI platform to take a common IQ test known as Raven's Advanced Progressive Matrices (RAPM). First, a baseline group of participants took the Raven's IQ test by traditional survey. This group averaged 45.6% correct. Then, groups of approximately 35 individuals answered IQ test questions together using a CSI platform called Thinkscape. These groups averaged 80.5% correct. This places the CSI groups in the 97th percentile of IQ test-takers and corresponds to an effective IQ increase of 28 points (p<0.001). This is an encouraging result and suggests that CSI is a powerful method for enabling conversational collective intelligence in large, networked groups. In addition, because CSI is scalable across groups of potentially any size, this technology may provide a viable pathway to building a Collective Superintelligence.
Abstract:Conversational Swarm Intelligence (CSI) is a new method for enabling large human groups to hold real-time networked conversations using a technique modeled on the dynamics of biological swarms. Through the novel use of conversational agents powered by Large Language Models (LLMs), the CSI structure simultaneously enables local dialog among small deliberative groups and global propagation of conversational content across a larger population. In this way, CSI combines the benefits of small-group deliberative reasoning and large-scale collective intelligence. In this pilot study, participants deliberating in conversational swarms (via text chat) (a) produced 30% more contributions (p<0.05) than participants deliberating in a standard centralized chat room and (b) demonstrated 7.2% less variance in contribution quantity. These results indicate that users contributed more content and participated more evenly when using the CSI structure.