Abstract:Face Presentation Attack Detection (PAD) has drawn increasing attentions to secure the face recognition systems that are widely used in many applications. Conventional face anti-spoofing methods have been proposed, assuming that testing is from the same domain used for training, and so cannot generalize well on unseen attack scenarios. The trained models tend to overfit to the acquisition sensors and attack types available in the training data. In light of this, we propose an end-to-end learning framework based on Domain Adaptation (DA) to improve PAD generalization capability. Labeled source-domain samples are used to train the feature extractor and classifier via cross-entropy loss, while unsupervised data from the target domain are utilized in adversarial DA approach causing the model to learn domain-invariant features. Using DA alone in face PAD fails to adapt well to target domain that is acquired in different conditions with different devices and attack types than the source domain. And so, in order to keep the intrinsic properties of the target domain, deep clustering of target samples is performed. Training and deep clustering are performed end-to-end, and experiments performed on several public benchmark datasets validate that our proposed Deep Clustering guided Unsupervised Domain Adaptation (DCDA) can learn more generalized information compared with the state-of-the-art classification error on the target domain.
Abstract:Biometric presentation attack detection is gaining increasing attention. Users of mobile devices find it more convenient to unlock their smart applications with finger, face or iris recognition instead of passwords. In this paper, we survey the approaches presented in the recent literature to detect face and iris presentation attacks. Specifically, we investigate the effectiveness of fine tuning very deep convolutional neural networks to the task of face and iris antispoofing. We compare two different fine tuning approaches on six publicly available benchmark datasets. Results show the effectiveness of these deep models in learning discriminative features that can tell apart real from fake biometric images with very low error rate. Cross-dataset evaluation on face PAD showed better generalization than state of the art. We also performed cross-dataset testing on iris PAD datasets in terms of equal error rate which was not reported in literature before. Additionally, we propose the use of a single deep network trained to detect both face and iris attacks. We have not noticed accuracy degradation compared to networks trained for only one biometric separately. Finally, we analyzed the learned features by the network, in correlation with the image frequency components, to justify its prediction decision.