Abstract:The functional characterization of different neuronal types has been a longstanding and crucial challenge. With the advent of physical quantum computers, it has become possible to apply quantum machine learning algorithms to translate theoretical research into practical solutions. Previous studies have shown the advantages of quantum algorithms on artificially generated datasets, and initial experiments with small binary classification problems have yielded comparable outcomes to classical algorithms. However, it is essential to investigate the potential quantum advantage using real-world data. To the best of our knowledge, this study is the first to propose the utilization of quantum systems to classify neuron morphologies, thereby enhancing our understanding of the performance of automatic multiclass neuron classification using quantum kernel methods. We examined the influence of feature engineering on classification accuracy and found that quantum kernel methods achieved similar performance to classical methods, with certain advantages observed in various configurations.
Abstract:This paper demonstrates the integration of Reinforcement Learning (RL) into quantum transpiling workflows, significantly enhancing the synthesis and routing of quantum circuits. By employing RL, we achieve near-optimal synthesis of Linear Function, Clifford, and Permutation circuits, up to 9, 11 and 65 qubits respectively, while being compatible with native device instruction sets and connectivity constraints, and orders of magnitude faster than optimization methods such as SAT solvers. We also achieve significant reductions in two-qubit gate depth and count for circuit routing up to 133 qubits with respect to other routing heuristics such as SABRE. We find the method to be efficient enough to be useful in practice in typical quantum transpiling pipelines. Our results set the stage for further AI-powered enhancements of quantum computing workflows.