Abstract:With calls for increasing transparency, governments are releasing greater amounts of data in multiple domains including finance, education and healthcare. The efficient exploratory analysis of healthcare data constitutes a significant challenge. Key concerns in public health include the quick identification and analysis of trends, and the detection of outliers. This allows policies to be rapidly adapted to changing circumstances. We present an efficient outlier detection technique, termed PIKS (Pruned iterative-k means searchlight), which combines an iterative k-means algorithm with a pruned searchlight based scan. We apply this technique to identify outliers in two publicly available healthcare datasets from the New York Statewide Planning and Research Cooperative System, and California's Office of Statewide Health Planning and Development. We provide a comparison of our technique with three other existing outlier detection techniques, consisting of auto-encoders, isolation forests and feature bagging. We identified outliers in conditions including suicide rates, immunity disorders, social admissions, cardiomyopathies, and pregnancy in the third trimester. We demonstrate that the PIKS technique produces results consistent with other techniques such as the auto-encoder. However, the auto-encoder needs to be trained, which requires several parameters to be tuned. In comparison, the PIKS technique has far fewer parameters to tune. This makes it advantageous for fast, "out-of-the-box" data exploration. The PIKS technique is scalable and can readily ingest new datasets. Hence, it can provide valuable, up-to-date insights to citizens, patients and policy-makers. We have made our code open source, and with the availability of open data, other researchers can easily reproduce and extend our work. This will help promote a deeper understanding of healthcare policies and public health issues.
Abstract:Due to rapidly rising healthcare costs worldwide, there is significant interest in controlling them. An important aspect concerns price transparency, as preliminary efforts have demonstrated that patients will shop for lower costs, driving efficiency. This requires the data to be made available, and models that can predict healthcare costs for a wide range of patient demographics and conditions. We present an approach to this problem by developing a predictive model using machine-learning techniques. We analyzed de-identified patient data from New York State SPARCS (statewide planning and research cooperative system), consisting of 2.3 million records in 2016. We built models to predict costs from patient diagnoses and demographics. We investigated two model classes consisting of sparse regression and decision trees. We obtained the best performance by using a decision tree with depth 10. We obtained an R-square value of 0.76 which is better than the values reported in the literature for similar problems.