Abstract:Dealing with irregular domains, graph signal processing (GSP) has attracted much attention especially in brain imaging analysis. Motor imagery tasks are extensively utilized in brain-computer interface (BCI) systems that perform classification using features extracted from Electroencephalogram signals. In this paper, a GSP-based approach is presented for two-class motor imagery tasks classification. The proposed method exploits simultaneous diagonalization of two matrices that quantify the covariance structure of graph spectral representation of data from each class, providing a discriminative subspace where distinctive features are extracted from the data. The performance of the proposed method was evaluated on Dataset IVa from BCI Competition III. Experimental results show that the proposed method outperforms two state-of-the-art alternative methods.
Abstract:The human cortical layer exhibits a convoluted morphology that is unique to each individual. Conventional volumetric fMRI processing schemes take for granted the rich information provided by the underlying anatomy. We present a method to study fMRI data on subject-specific cerebral hemisphere cortex (CHC) graphs, which encode the cortical morphology at the resolution of voxels in 3-D. We study graph spectral energy metrics associated to fMRI data of 100 subjects from the Human Connectome Project database, across seven tasks. Experimental results signify the strength of CHC graphs' Laplacian eigenvector bases in capturing subtle spatial patterns specific to different functional loads as well as experimental conditions within each task.
Abstract:The human brain cortical layer has a convoluted morphology that is unique to each individual. Characterization of the cortical morphology is necessary in longitudinal studies of structural brain change, as well as in discriminating individuals in health and disease. A method for encoding the cortical morphology in the form of a graph is presented. The design of graphs that encode the global cerebral hemisphere cortices as well as localized cortical regions is proposed. Spectral metrics derived from these graphs are then studied and proposed as descriptors of cortical morphology. As proof-of-concept of their applicability in characterizing cortical morphology, the metrics are studied in the context of hemispheric asymmetry as well as gender dependent discrimination of cortical morphology.
Abstract:The human brain cortical layer has a convoluted morphology that is unique to each individual. Characterization of the cortical morphology is necessary in longitudinal studies of structural brain change, as well as in discriminating individuals in health and disease. A method for encoding the cortical morphology in the form of a graph is presented. The design of graphs that encode the global cerebral hemisphere cortices as well as localized cortical regions is proposed. Spectral features of these graphs are then studied and proposed as descriptors of cortical morphology. As proof-of-concept of their applicability in characterizing cortical morphology, the descriptors are studied in the context of discriminating individuals based on their sex.