Abstract:Accurate prediction of drug target interactions is critical for accelerating drug discovery and elucidating complex biological mechanisms. In this work, we frame drug target prediction as a link prediction task on heterogeneous biomedical knowledge graphs (KG) that integrate drugs, proteins, diseases, pathways, and other relevant entities. Conventional KG embedding methods such as TransE and ComplEx SE are hindered by their reliance on computationally intensive negative sampling and their limited generalization to unseen drug target pairs. To address these challenges, we propose Multi Context Aware Sampling (MuCoS), a novel framework that prioritizes high-density neighbours to capture salient structural patterns and integrates these with contextual embeddings derived from BERT. By unifying structural and textual modalities and selectively sampling highly informative patterns, MuCoS circumvents the need for negative sampling, significantly reducing computational overhead while enhancing predictive accuracy for novel drug target associations and drug targets. Extensive experiments on the KEGG50k dataset demonstrate that MuCoS outperforms state-of-the-art baselines, achieving up to a 13\% improvement in mean reciprocal rank (MRR) in predicting any relation in the dataset and a 6\% improvement in dedicated drug target relation prediction.
Abstract:Knowledge graph completion (KGC) seeks to predict missing entities (e.g., heads or tails) or relationships in knowledge graphs (KGs), which often contain incomplete data. Traditional embedding-based methods, such as TransE and ComplEx, have improved tail entity prediction but struggle to generalize to unseen entities during testing. Textual-based models mitigate this issue by leveraging additional semantic context; however, their reliance on negative triplet sampling introduces high computational overhead, semantic inconsistencies, and data imbalance. Recent approaches, like KG-BERT, show promise but depend heavily on entity descriptions, which are often unavailable in KGs. Critically, existing methods overlook valuable structural information in the KG related to the entities and relationships. To address these challenges, we propose Multi-Context-Aware Knowledge Graph Completion (MuCo-KGC), a novel model that utilizes contextual information from linked entities and relations within the graph to predict tail entities. MuCo-KGC eliminates the need for entity descriptions and negative triplet sampling, significantly reducing computational complexity while enhancing performance. Our experiments on standard datasets, including FB15k-237, WN18RR, CoDEx-S, and CoDEx-M, demonstrate that MuCo-KGC outperforms state-of-the-art methods on three datasets. Notably, MuCo-KGC improves MRR on WN18RR, and CoDEx-S and CoDEx-M datasets by $1.63\%$, and $3.77\%$ and $20.15\%$ respectively, demonstrating its effectiveness for KGC tasks.
Abstract:Drug-target interactions are critical for understanding biological processes and advancing drug discovery. However, traditional methods such as ComplEx-SE, TransE, and DistMult struggle with unseen relationships and negative triplets, which limits their effectiveness in drug-target prediction. To address these challenges, we propose Multi-Context-Aware Sampling (MuCoS), an efficient and positively accurate method for drug-target prediction. MuCoS reduces computational complexity by prioritizing neighbors of higher density to capture informative structural patterns. These optimized neighborhood representations are integrated with BERT, enabling contextualized embeddings for accurate prediction of missing relationships or tail entities. MuCoS avoids the need for negative triplet sampling, reducing computation while improving performance over unseen entities and relations. Experiments on the KEGG50k biomedical dataset show that MuCoS improved over existing models by 13\% on MRR, 7\% on Hits@1, 4\% on Hits@3, and 18\% on Hits@10 for the general relationship, and by 6\% on MRR, 1\% on Hits@1, 3\% on Hits@3, and 12\% on Hits@10 for prediction of drug-target relationship.
Abstract:Knowledge graphs (KGs) are valuable for representing structured, interconnected information across domains, enabling tasks like semantic search, recommendation systems and inference. A pertinent challenge with KGs, however, is that many entities (i.e., heads, tails) or relationships are unknown. Knowledge Graph Completion (KGC) addresses this by predicting these missing nodes or links, enhancing the graph's informational depth and utility. Traditional methods like TransE and ComplEx predict tail entities but struggle with unseen entities. Textual-based models leverage additional semantics but come with high computational costs, semantic inconsistencies, and data imbalance issues. Recent LLM-based models show improvement but overlook contextual information and rely heavily on entity descriptions. In this study, we introduce a contextualized BERT model for KGC that overcomes these limitations by utilizing the contextual information from neighbouring entities and relationships to predict tail entities. Our model eliminates the need for entity descriptions and negative triplet sampling, reducing computational demands while improving performance. Our model outperforms state-of-the-art methods on standard datasets, improving Hit@1 by 5.3% and 4.88% on FB15k-237 and WN18RR respectively, setting a new benchmark in KGC.