Abstract:Model-based single image dehazing algorithms restore haze-free images with sharp edges and rich details for real-world hazy images at the expense of low PSNR and SSIM values for synthetic hazy images. Data-driven ones restore haze-free images with high PSNR and SSIM values for synthetic hazy images but with low contrast, and even some remaining haze for real world hazy images. In this paper, a novel single image dehazing algorithm is introduced by combining model-based and data-driven approaches. Both transmission map and atmospheric light are first estimated by the model-based methods, and then refined by dual-scale generative adversarial networks (GANs) based approaches. The resultant algorithm forms a neural augmentation which converges very fast while the corresponding data-driven approach might not converge. Haze-free images are restored by using the estimated transmission map and atmospheric light as well as the Koschmiederlaw. Experimental results indicate that the proposed algorithm can remove haze well from real-world and synthetic hazy images.
Abstract:Model-based single image dehazing algorithms restore images with sharp edges and rich details at the expense of low PSNR values. Data-driven ones restore images with high PSNR values but with low contrast, and even some remaining haze. In this paper, a novel single image dehazing algorithm is introduced by fusing model-based and data-driven approaches. Both transmission map and atmospheric light are initialized by the model-based methods, and refined by deep learning approaches which form a neural augmentation. Haze-free images are restored by using the transmission map and atmospheric light. Experimental results indicate that the proposed algorithm can remove haze well from real-world and synthetic hazy images.
Abstract:Model driven single image dehazing was widely studied on top of different priors due to its extensive applications. Ambiguity between object radiance and haze and noise amplification in sky regions are two inherent problems of model driven single image dehazing. In this paper, a dark direct attenuation prior (DDAP) is proposed to address the former problem. A novel haze line averaging is proposed to reduce the morphological artifacts caused by the DDAP which enables a weighted guided image filter with a smaller radius to further reduce the morphological artifacts while preserve the fine structure in the image. A multi-scale dehazing algorithm is then proposed to address the latter problem by adopting Laplacian and Guassian pyramids to decompose the hazy image into different levels and applying different haze removal and noise reduction approaches to restore the scene radiance at different levels of the pyramid. The resultant pyramid is collapsed to restore a haze-free image. Experiment results demonstrate that the proposed algorithm outperforms state of the art dehazing algorithms and the noise is indeed prevented from being amplified in the sky region.