Abstract:The paper discusses an adaptive strategy to effectively control nonlinear manipulation motions of a dual arm robot (DAR) under system uncertainties including parameter variations, actuator nonlinearities and external disturbances. It is proposed that the control scheme is first derived from the dynamic surface control (DSC) method, which allows the robot's end-effectors to robustly track the desired trajectories. Moreover, since exactly determining the DAR system's dynamics is impractical due to the system uncertainties, the uncertain system parameters are then proposed to be adaptively estimated by the use of the radial basis function network (RBFN). The adaptation mechanism is derived from the Lyapunov theory, which theoretically guarantees stability of the closed-loop control system. The effectiveness of the proposed RBFN-DSC approach is demonstrated by implementing the algorithm in a synthetic environment with realistic parameters, where the obtained results are highly promising.
Abstract:A new path planning method for Mobile Robots (MR) has been developed and implemented. On the one hand, based on the shortest path from the start point to the goal point, this path planner can choose the best moving directions of the MR, which helps to reach the target point as soon as possible. On the other hand, with an intelligent obstacle avoidance, our method can find the target point with the near-shortest path length while avoiding some infinite loop traps of several obstacles in unknown environments. The combination of two approaches helps the MR to reach the target point with a very reliable algorithm. Moreover, by continuous updates of the on-board sensors information, this approach can generate the MRs trajectory both in static and dynamic environments. A large number of simulations in some similar studies environments demonstrate the power of the proposed path planning algorithm.