Abstract:Recent successes of artificial intelligence and deep learning often depend on the well-collected training dataset which is assumed to have an identical distribution with the test dataset. However, this assumption, which is called closed-set learning, is hard to meet in realistic scenarios for deploying deep learning models. As one of the solutions to mitigate this assumption, research on out-of-distribution (OOD) detection has been actively explored in various domains. In OOD detection, we assume that we are given the data of a new class that was not seen in the training phase, i.e., outlier, at the evaluation phase. The ultimate goal of OOD detection is to detect and classify such unseen outlier data as a novel "unknown" class. Among various research branches for OOD detection, generating a virtual outlier during the training phase has been proposed. However, conventional generation-based methodologies utilize in-distribution training dataset to imitate outlier instances, which limits the quality of the synthesized virtual outlier instance itself. In this paper, we propose a novel methodology for OOD detection named Auxiliary Range Expansion for Outlier Synthesis, or ARES. ARES models the region for generating out-of-distribution instances by escaping from the given in-distribution region; instead of remaining near the boundary of in-distribution region. Various stages consists ARES to ultimately generate valuable OOD-like virtual instances. The energy score-based discriminator is then trained to effectively separate in-distribution data and outlier data. Quantitative experiments on broad settings show the improvement of performance by our method, and qualitative results provide logical explanations of the mechanism behind it.