Abstract:With the development and widespread use of wireless devices in recent years (mobile phones, Internet of Things, Wi-Fi), the electromagnetic spectrum has become extremely crowded. In order to counter security threats posed by rogue or unknown transmitters, it is important to identify RF transmitters not by the data content of the transmissions but based on the intrinsic physical characteristics of the transmitters. RF waveforms represent a particular challenge because of the extremely high data rates involved and the potentially large number of transmitters present in a given location. These factors outline the need for rapid fingerprinting and identification methods that go beyond the traditional hand-engineered approaches. In this study, we investigate the use of machine learning (ML) strategies to the classification and identification problems, and the use of wavelets to reduce the amount of data required. Four different ML strategies are evaluated: deep neural nets (DNN), convolutional neural nets (CNN), support vector machines (SVM), and multi-stage training (MST) using accelerated Levenberg-Marquardt (A-LM) updates. The A-LM MST method preconditioned by wavelets was by far the most accurate, achieving 100% classification accuracy of transmitters, as tested using data originating from 12 different transmitters. We discuss strategies for extension of MST to a much larger number of transmitters.