Abstract:Particle smoothing methods are used for inference of stochastic processes based on noisy observations. Typically, the estimation of the marginal posterior distribution given all observations is cumbersome and computational intensive. In this paper, we propose a simple algorithm based on path integral control theory to estimate the smoothing distribution of continuous-time diffusion processes with partial observations. In particular, we use an adaptive importance sampling method to improve the effective sampling size of the posterior over processes given the observations and the reliability of the estimation of the marginals. This is achieved by estimating a feedback controller to sample efficiently from the joint smoothing distributions. We compare the results with estimations obtained from the standard Forward Filter/Backward Simulator for two diffusion processes of different complexity. We show that the proposed method gives more reliable estimations than the standard FFBSi when the smoothing distribution is poorly represented by the filter distribution.
Abstract:We introduce novel results for approximate inference on planar graphical models using the loop calculus framework. The loop calculus (Chertkov and Chernyak, 2006) allows to express the exact partition function of a graphical model as a finite sum of terms that can be evaluated once the belief propagation (BP) solution is known. In general, full summation over all correction terms is intractable. We develop an algorithm for the approach presented in (Certkov et al., 2008) which represents an efficient truncation scheme on planar graphs and a new representation of the series in terms of Pfaffians of matrices. We analyze the performance of the algorithm for the partition function approximation for models with binary variables and pairwise interactions on grids and other planar graphs. We study in detail both the loop series and the equivalent Pfaffian series and show that the first term of the Pfaffian series for the general, intractable planar model, can provide very accurate approximations. The algorithm outperforms previous truncation schemes of the loop series and is competitive with other state-of-the-art methods for approximate inference.
Abstract:Recently, M. Chertkov and V.Y. Chernyak derived an exact expression for the partition sum (normalization constant) corresponding to a graphical model, which is an expansion around the Belief Propagation solution. By adding correction terms to the BP free energy, one for each "generalized loop" in the factor graph, the exact partition sum is obtained. However, the usually enormous number of generalized loops generally prohibits summation over all correction terms. In this article we introduce Truncated Loop Series BP (TLSBP), a particular way of truncating the loop series of M. Chertkov and V.Y. Chernyak by considering generalized loops as compositions of simple loops. We analyze the performance of TLSBP in different scenarios, including the Ising model, regular random graphs and on Promedas, a large probabilistic medical diagnostic system. We show that TLSBP often improves upon the accuracy of the BP solution, at the expense of increased computation time. We also show that the performance of TLSBP strongly depends on the degree of interaction between the variables. For weak interactions, truncating the series leads to significant improvements, whereas for strong interactions it can be ineffective, even if a high number of terms is considered.