Abstract:Automatic annotation of temporal expressions is a research challenge of great interest in the field of information extraction. Gold standard temporally-annotated resources are limited in size, which makes research using them difficult. Standards have also evolved over the past decade, so not all temporally annotated data is in the same format. We vastly increase available human-annotated temporal expression resources by converting older format resources to TimeML/TIMEX3. This task is difficult due to differing annotation methods. We present a robust conversion tool and a new, large temporal expression resource. Using this, we evaluate our conversion process by using it as training data for an existing TimeML annotation tool, achieving a 0.87 F1 measure -- better than any system in the TempEval-2 timex recognition exercise.