Abstract:Single-subject mapping of resting-state brain functional activity to non-imaging phenotypes is a major goal of neuroimaging. The large majority of learning approaches applied today rely either on static representations or on short-term temporal correlations. This is at odds with the nature of brain activity which is dynamic and exhibit both short- and long-range dependencies. Further, new sophisticated deep learning approaches have been developed and validated on single tasks/datasets. The application of these models for the study of a different targets typically require exhaustive hyperparameter search, model engineering and trial and error to obtain competitive results with simpler linear models. This in turn limit their adoption and hinder fair benchmarking in a rapidly developing area of research. To this end, we propose fMRI-S4; a versatile deep learning model for the classification of phenotypes and psychiatric disorders from the timecourses of resting-state functional magnetic resonance imaging scans. fMRI-S4 capture short- and long- range temporal dependencies in the signal using 1D convolutions and the recently introduced state-space models S4. The proposed architecture is lightweight, sample-efficient and robust across tasks/datasets. We validate fMRI-S4 on the tasks of diagnosing major depressive disorder (MDD), autism spectrum disorder (ASD) and sex classifcation on three multi-site rs-fMRI datasets. We show that fMRI-S4 can outperform existing methods on all three tasks and can be trained as a plug&play model without special hyperpararameter tuning for each setting
Abstract:Single subject prediction of brain disorders from neuroimaging data has gained increasing attention in recent years. Yet, for some heterogeneous disorders such as major depression disorder (MDD) and autism spectrum disorder (ASD), the performance of prediction models on large-scale multi-site datasets remains poor. We present a two-stage framework to improve the diagnosis of heterogeneous psychiatric disorders from resting-state functional magnetic resonance imaging (rs-fMRI). First, we propose a self-supervised mask prediction task on data from healthy individuals that can exploit differences between healthy controls and patients in clinical datasets. Next, we train a supervised classifier on the learned discriminative representations. To model rs-fMRI data, we develop Graph-S4; an extension to the recently proposed state-space model S4 to graph settings where the underlying graph structure is not known in advance. We show that combining the framework and Graph-S4 can significantly improve the diagnostic performance of neuroimaging-based single subject prediction models of MDD and ASD on three open-source multi-center rs-fMRI clinical datasets.