Abstract:A novel decentralised trajectory generation algorithm for Multi Agent systems is presented. Multi-robot systems have the capacity to transform lives in a variety of fields. But, trajectory generation for multi-robot systems is still in its nascent stage and limited to heavily controlled environments. To overcome that, an online trajectory optimization algorithm that generates collision-free trajectories for robots, when given initial state and desired end pose, is proposed. It utilizes a simple method for obstacle detection, local shape based maps for obstacles and communication of robots' current states. Using the local maps, safe regions are formulated. Based upon the communicated data, trajectories are predicted for other robots and incorporated for collision-avoidance by resizing the regions of free space that the robot can be in without colliding. A trajectory is then optimized constraining the robot to remain within the safe region with the trajectories represented by piecewise polynomials parameterized by time. The algorithm is implemented using a receding horizon principle. The proposed algorithm is extensively tested in simulations on Gazebo using ROS with fourth order differentially flat aerial robots and non-holonomic second order wheeled robots in structured and unstructured environments.
Abstract:Multi robot systems have the potential to be utilized in a variety of applications. In most of the previous works, the trajectory generation for multi robot systems is implemented in known environments. To overcome that we present an online trajectory optimization algorithm that utilizes communication of robots' current states to account to the other robots while using local object based maps for identifying obstacles. Based upon this data, we predict the trajectory expected to be traversed by the robots and utilize that to avoid collisions by formulating regions of free space that the robot can be without colliding with other robots and obstacles. A trajectory is optimized constraining the robot to remain within this region.The proposed method is tested in simulations on Gazebo using ROS.
Abstract:Autonomous Vehicles are currently being tested in a variety of scenarios. As we move towards Autonomous Vehicles, how should intersections look? To answer that question, we break down an intersection management into the different conundrums and scenarios involved in the trajectory planning and current approaches to solve them. Then, a brief analysis of current works in autonomous intersection is conducted. With a critical eye, we try to delve into the discrepancies of existing solutions while presenting some critical and important factors that have been addressed. Furthermore, open issues that have to be addressed are also emphasized. We also try to answer the question of how to benchmark intersection management algorithms by providing some factors that impact autonomous navigation at intersection.