Abstract:Multicopter drones are becoming a key platform in several application domains, enabling precise on-the-spot sensing and/or actuation. We focus on the case where the drone must process the sensor data in order to decide, depending on the outcome, whether it needs to perform some additional action, e.g., more accurate sensing or some form of actuation. On the one hand, waiting for the computation to complete may waste time, if it turns out that no further action is needed. On the other hand, if the drone starts moving toward the next point of interest before the computation ends, it may need to return back to the previous point, if some action needs to be taken. In this paper, we propose a learning approach that enables the drone to take informed decisions about whether to wait for the result of the computation (or not), based on past experience gathered from previous missions. Through an extensive evaluation, we show that the proposed approach, when properly configured, outperforms several static policies, up to 25.8%, over a wide variety of different scenarios where the probability of some action being required at a given point of interest remains stable as well as for scenarios where this probability varies in time.
Abstract:An ever increasing number of applications can employ aerial unmanned vehicles, or so-called drones, to perform different sensing and possibly also actuation tasks from the air. In some cases, the data that is captured at a given point has to be processed before moving to the next one. Drones can exploit nearby edge servers to offload the computation instead of performing it locally. However, doing this in a naive way can be suboptimal if servers have limited computing resources and drones have limited energy resources. In this paper, we propose a protocol and resource reservation scheme for each drone and edge server to decide, in a dynamic and fully decentralized way, whether to offload the computation and respectively whether to accept such an offloading requests, with the objective to evenly reduce the drones' mission times. We evaluate our approach through extensive simulation experiments, showing that it can significantly reduce the mission times compared to a no-offloading scenario by up to 26.2%, while outperforming an offloading schedule that has been computed offline by up to 7.4% as well as a purely opportunistic approach by up to 23.9%.