Abstract:As robots shift from industrial to human-centered spaces, adopting mobile manipulators, which expand workspace capabilities, becomes crucial. In these settings, seamless interaction with humans necessitates compliant control. Two common methods for safe interaction, admittance, and impedance control, require force or torque sensors, often absent in lower-cost or lightweight robots. This paper presents an adaption of impedance control that can be used on current-controlled robots without the use of force or torque sensors and its application for compliant control of a mobile manipulator. A calibration method is designed that enables estimation of the actuators' current/torque ratios and frictions, used by the adapted impedance controller, and that can handle model errors. The calibration method and the performance of the designed controller are experimentally validated using the Kinova GEN3 Lite arm. Results show that the calibration method is consistent and that the designed controller for the arm is compliant while also being able to track targets with five-millimeter precision when no interaction is present. Additionally, this paper presents two operational modes for interacting with the mobile manipulator: one for guiding the robot around the workspace through interacting with the arm and another for executing a tracking task, both maintaining compliance to external forces. These operational modes were tested in real-world experiments, affirming their practical applicability and effectiveness.
Abstract:When a robotic system is redundant with respect to a given task, the remaining degrees of freedom can be used to satisfy additional objectives. With current robotic systems having more and more degrees of freedom, this can lead to an entire hierarchy of tasks that need to be solved according to given priorities. In this paper, the first compliant control strategy is presented that allows to consider an arbitrary number of equality and inequality tasks, while still preserving the natural inertia of the robot. The approach is therefore a generalization of a passivity-based controller to the case of an arbitrary number of equality and inequality tasks. The key idea of the method is to use a Weighted Hierarchical Quadratic Problem to extract the set of active tasks and use the latter to perform a coordinate transformation that inertially decouples the tasks. Thereby unifying the line of research focusing on optimization-based and passivity-based multi-task controllers. The method is validated in simulation.