Abstract:Stance detection, the classification of attitudes expressed in a text towards a specific topic, is vital for applications like fake news detection and opinion mining. However, the scarcity of labeled data remains a challenge for this task. To address this problem, we propose Dynamic Model Adaptation with Contextual Data Generation (DyMoAdapt) that combines Few-Shot Learning and Large Language Models. In this approach, we aim to fine-tune an existing model at test time. We achieve this by generating new topic-specific data using GPT-3. This method could enhance performance by allowing the adaptation of the model to new topics. However, the results did not increase as we expected. Furthermore, we introduce the Multi Generated Topic VAST (MGT-VAST) dataset, which extends VAST using GPT-3. In this dataset, each context is associated with multiple topics, allowing the model to understand the relationship between contexts and various potential topics
Abstract:This paper describes the IUST NLP Lab submission to the Prompting Large Language Models as Explainable Metrics Shared Task at the Eval4NLP 2023 Workshop on Evaluation & Comparison of NLP Systems. We have proposed a zero-shot prompt-based strategy for explainable evaluation of the summarization task using Large Language Models (LLMs). The conducted experiments demonstrate the promising potential of LLMs as evaluation metrics in Natural Language Processing (NLP), particularly in the field of summarization. Both few-shot and zero-shot approaches are employed in these experiments. The performance of our best provided prompts achieved a Kendall correlation of 0.477 with human evaluations in the text summarization task on the test data. Code and results are publicly available on GitHub.
Abstract:Large-scale pretrained models such as LXMERT are becoming popular for learning cross-modal representations on text-image pairs for vision-language tasks. According to the lottery ticket hypothesis, NLP and computer vision models contain smaller subnetworks capable of being trained in isolation to full performance. In this paper, we combine these observations to evaluate whether such trainable subnetworks exist in LXMERT when fine-tuned on the VQA task. In addition, we perform a model size cost-benefit analysis by investigating how much pruning can be done without significant loss in accuracy. Our experiment results demonstrate that LXMERT can be effectively pruned by 40%-60% in size with 3% loss in accuracy.