Abstract:TADS are a novel, concise white-box representation of neural networks. In this paper, we apply TADS to the problem of neural network verification, using them to generate either proofs or concise error characterizations for desirable neural network properties. In a case study, we consider the robustness of neural networks to adversarial attacks, i.e., small changes to an input that drastically change a neural networks perception, and show that TADS can be used to provide precise diagnostics on how and where robustness errors a occur. We achieve these results by introducing Precondition Projection, a technique that yields a TADS describing network behavior precisely on a given subset of its input space, and combining it with PCA, a traditional, well-understood dimensionality reduction technique. We show that PCA is easily compatible with TADS. All analyses can be implemented in a straightforward fashion using the rich algebraic properties of TADS, demonstrating the utility of the TADS framework for neural network explainability and verification. While TADS do not yet scale as efficiently as state-of-the-art neural network verifiers, we show that, using PCA-based simplifications, they can still scale to mediumsized problems and yield concise explanations for potential errors that can be used for other purposes such as debugging a network or generating new training samples.
Abstract:This is a master's thesis concerning the theoretical ideas of geometric deep learning. Geometric deep learning aims to provide a structured characterization of neural network architectures, specifically focused on the ideas of invariance and equivariance of data with respect to given transformations. This thesis aims to provide a theoretical evaluation of geometric deep learning, compiling theoretical results that characterize the properties of invariant neural networks with respect to learning performance.
Abstract:In this paper we present an algebraic approach to the precise and global verification and explanation of \emph{Rectifier Neural Networks}, a subclass of \emph{Piece-wise Linear Neural Networks} (PLNNs), i.e., networks that semantically represent piece-wise affine functions. Key to our approach is the symbolic execution of these networks that allows the construction of semantically equivalent \emph{Typed Affine Decision Structures} (TADS). Due to their deterministic and sequential nature, TADS can, similarly to decision trees, be considered as white-box models and therefore as precise solutions to the model and outcome explanation problem. TADS are linear algebras which allows one to elegantly compare Rectifier Networks for equivalence or similarity, both with precise diagnostic information in case of failure, and to characterize their classification potential by precisely characterizing the set of inputs that are specifically classified or the set of inputs where two network-based classifiers differ. All phenomena are illustrated along a detailed discussion of a minimal, illustrative example: the continuous XOR function.