Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
Abstract:Interpreting computations in the visual cortex as learning and inference in a generative model of the environment has received wide support both in neuroscience and cognitive science. However, hierarchical computations, a hallmark of visual cortical processing, has remained impervious for generative models because of a lack of adequate tools to address it. Here we capitalize on advances in Variational Autoencoders (VAEs) to investigate the early visual cortex with sparse coding hierarchical VAEs trained on natural images. We design alternative architectures that vary both in terms of the generative and the recognition components of the two latent-layer VAE. We show that representations similar to the one found in the primary and secondary visual cortices naturally emerge under mild inductive biases. Importantly, a nonlinear representation for texture-like patterns is a stable property of the high-level latent space resistant to the specific architecture of the VAE, reminiscent of the secondary visual cortex. We show that a neuroscience-inspired choice of the recognition model, which features a top-down processing component is critical for two signatures of computations with generative models: learning higher order moments of the posterior beyond the mean and image inpainting. Patterns in higher order response statistics provide inspirations for neuroscience to interpret response correlations and for machine learning to evaluate the learned representations through more detailed characterization of the posterior.
Abstract:Both the human brain and artificial learning agents operating in real-world or comparably complex environments are faced with the challenge of online model selection. In principle this challenge can be overcome: hierarchical Bayesian inference provides a principled method for model selection and it converges on the same posterior for both off-line (i.e. batch) and online learning. However, maintaining a parameter posterior for each model in parallel has in general an even higher memory cost than storing the entire data set and is consequently clearly unfeasible. Alternatively, maintaining only a limited set of models in memory could limit memory requirements. However, sufficient statistics for one model will usually be insufficient for fitting a different kind of model, meaning that the agent loses information with each model change. We propose that episodic memory can circumvent the challenge of limited memory-capacity online model selection by retaining a selected subset of data points. We design a method to compute the quantities necessary for model selection even when the data is discarded and only statistics of one (or few) learnt models are available. We demonstrate on a simple model that a limited-sized episodic memory buffer, when the content is optimised to retain data with statistics not matching the current representation, can resolve the fundamental challenge of online model selection.