Abstract:The creation of precise and high-resolution crop point clouds in agricultural fields has become a key challenge for high-throughput phenotyping applications. This work implements a novel calibration method to calibrate the laser scanning system of an agricultural field robot consisting of two industrial-grade laser scanners used for high-precise 3D crop point cloud creation. The calibration method optimizes the transformation between the scanner origins and the robot pose by minimizing 3D point omnivariances within the point cloud. Moreover, we present a novel factor graph-based pose estimation method that fuses total station prism measurements with IMU and GNSS heading information for high-precise pose determination during calibration. The root-mean-square error of the distances to a georeferenced ground truth point cloud results in 0.8 cm after parameter optimization. Furthermore, our results show the importance of a reference point cloud in the calibration method needed to estimate the vertical translation of the calibration. Challenges arise due to non-static parameters while the robot moves, indicated by systematic deviations to a ground truth terrestrial laser scan.