Abstract:Hate speech is a form of online harassment that involves the use of abusive language, and it is commonly seen in social media posts. This sort of harassment mainly focuses on specific group characteristics such as religion, gender, ethnicity, etc and it has both societal and economic consequences nowadays. The automatic detection of abusive language in text postings has always been a difficult task, but it is lately receiving much interest from the scientific community. This paper addresses the important problem of discerning hateful content in social media. The model we propose in this work is an extension of an existing approach based on LSTM neural network architectures, which we appropriately enhanced and fine-tuned to detect certain forms of hatred language, such as racism or sexism, in a short text. The most significant enhancement is the conversion to a two-stage scheme consisting of Recurrent Neural Network (RNN) classifiers. The output of all One-vs-Rest (OvR) classifiers from the first stage are combined and used to train the second stage classifier, which finally determines the type of harassment. Our study includes a performance comparison of several proposed alternative methods for the second stage evaluated on a public corpus of 16k tweets, followed by a generalization study on another dataset. The reported results show the superior classification quality of the proposed scheme in the task of hate speech detection as compared to the current state-of-the-art.
Abstract:This work addresses the challenges related to attacks on collaborative tagging systems, which often comes in a form of malicious annotations or profile injection attacks. In particular, we study various countermeasures against two types of such attacks for social tagging systems, the Overload attack and the Piggyback attack. The countermeasure schemes studied here include baseline classifiers such as, Naive Bayes filter and Support Vector Machine, as well as a Deep Learning approach. Our evaluation performed over synthetic spam data generated from del.icio.us dataset, shows that in most cases, Deep Learning can outperform the classical solutions, providing high-level protection against threats.
Abstract:This paper addresses the important problem of discerning hateful content in social media. We propose a detection scheme that is an ensemble of Recurrent Neural Network (RNN) classifiers, and it incorporates various features associated with user-related information, such as the users' tendency towards racism or sexism. These data are fed as input to the above classifiers along with the word frequency vectors derived from the textual content. Our approach has been evaluated on a publicly available corpus of 16k tweets, and the results demonstrate its effectiveness in comparison to existing state of the art solutions. More specifically, our scheme can successfully distinguish racism and sexism messages from normal text, and achieve higher classification quality than current state-of-the-art algorithms.