Abstract:Atrial Fibrillation is a common form of irregular heart rhythm that can be very dangerous. Our primary goal is to analyze Atrial Fibrillation data within ECGs to develop a model based only on RR-Intervals, or the length between heart-beats, to create a real time classification model for Atrial Fibrillation to be implemented in common heart-rate monitors on the market today. Physionet's MIT-BIH Atrial Fibrillation Database \cite{goldberger2000physiobank} and 2017 Challenge Database \cite{clifford2017af} were used to identify patterns of Atrial Fibrillation and test classification models on. These two datasets are very different. The MIT-BIH database contains long samples taken with a medical grade device, which is not useful for simulating a consumer device, but is useful for Atrial Fibrillation pattern detection. The 2017 Challenge database includes short ($<60sec$) samples taken with a portable device and reveals many of the challenges of Atrial Fibrillation classification in a real-time device. We developed multiple SVM models with three sets of extracted features as predictor variables which gave us moderately high accuracies with low computational intensity. With robust filtering techniques already applied in many Photoplethysmograph-based consumer heart-rate monitors, this method can be used to develop a reliable real time model for Atrial Fibrillation detection in consumer-grade heart-rate monitors.