Abstract:Social media analytics allows us to extract, analyze, and establish semantic from user-generated contents in social media platforms. This study utilized a mixed method including a three-step process of data collection, topic modeling, and data annotation for recognizing exercise related patterns. Based on the findings, 86% of the detected topics were identified as meaningful topics after conducting the data annotation process. The most discussed exercise-related topics were physical activity (18.7%), lifestyle behaviors (6.6%), and dieting (4%). The results from our experiment indicate that the exploratory data analysis is a practical approach to summarizing the various characteristics of text data for different health and medical applications.