Abstract:Probabilistic constellation shaping has been used in long-haul optically amplified coherent systems for its capability to approach the Shannon limit and realize fine rate granularity. The availability of high-bandwidth optical-electronic components and the previously mentioned advantages have invigorated researchers to explore probabilistic shaping (PS) in intensity-modulation and direct-detection (IM/DD) systems. This article presents an extensive comparison of uniform 8-ary pulse amplitude modulation (PAM) with PS PAM-8 using cap and cup Maxwell-Boltzmann (MB) distributions as well as MB distributions of different Gaussian orders. We report that in the presence of linear equalization, PS-PAM-8 outperforms uniform PAM-8 in terms of bit error ratio, achievable information rate and operational net bit rate indicating that cap-shaped PS-PAM-8 shows high tolerance against nonlinearities. In this paper, we have focused our investigations on O-band electro-absorption modulated laser unamplified IM/DD systems, which are operated close to the zero dispersion wavelength.