Abstract:We consider the generative problem of sampling from an unknown distribution for which only a sufficiently large number of training samples are available. In this paper, we build on previous work combining Schr\"odinger bridges and Langevin dynamics. A key bottleneck of this approach is the exponential dependence of the required training samples on the dimension, $d$, of the ambient state space. We propose a localization strategy which exploits conditional independence of conditional expectation values. Localization thus replaces a single high-dimensional Schr\"odinger bridge problem by $d$ low-dimensional Schr\"odinger bridge problems over the available training samples. As for the original approach, the localized sampler is stable and geometric ergodic. The sampler also naturally extends to conditional sampling and to Bayesian inference. We demonstrate the performance of our proposed scheme through experiments on a Gaussian problem with increasing dimensions and on a stochastic subgrid-scale parametrization conditional sampling problem.
Abstract:The computationally cheap machine learning architecture of random feature maps can be viewed as a single-layer feedforward network in which the weights of the hidden layer are random but fixed and only the outer weights are learned via linear regression. The internal weights are typically chosen from a prescribed distribution. The choice of the internal weights significantly impacts the accuracy of random feature maps. We address here the task of how to best select the internal weights. In particular, we consider the forecasting problem whereby random feature maps are used to learn a one-step propagator map for a dynamical system. We provide a computationally cheap hit-and-run algorithm to select good internal weights which lead to good forecasting skill. We show that the number of good features is the main factor controlling the forecasting skill of random feature maps and acts as an effective feature dimension. Lastly, we compare random feature maps with single-layer feedforward neural networks in which the internal weights are now learned using gradient descent. We find that random feature maps have superior forecasting capabilities whilst having several orders of magnitude lower computational cost.
Abstract:We present a supervised learning method to learn the propagator map of a dynamical system from partial and noisy observations. In our computationally cheap and easy-to-implement framework a neural network consisting of random feature maps is trained sequentially by incoming observations within a data assimilation procedure. By employing Takens' embedding theorem, the network is trained on delay coordinates. We show that the combination of random feature maps and data assimilation, called RAFDA, outperforms standard random feature maps for which the dynamics is learned using batch data.
Abstract:Data-driven prediction and physics-agnostic machine-learning methods have attracted increased interest in recent years achieving forecast horizons going well beyond those to be expected for chaotic dynamical systems. In a separate strand of research data-assimilation has been successfully used to optimally combine forecast models and their inherent uncertainty with incoming noisy observations. The key idea in our work here is to achieve increased forecast capabilities by judiciously combining machine-learning algorithms and data assimilation. We combine the physics-agnostic data-driven approach of random feature maps as a forecast model within an ensemble Kalman filter data assimilation procedure. The machine-learning model is learned sequentially by incorporating incoming noisy observations. We show that the obtained forecast model has remarkably good forecast skill while being computationally cheap once trained. Going beyond the task of forecasting, we show that our method can be used to generate reliable ensembles for probabilistic forecasting as well as to learn effective model closure in multi-scale systems.