Abstract:To confirm that the expressive power of ReLU neural networks grows with their depth, the function $F_n = \max \{0,x_1,\ldots,x_n\}$ has been considered in the literature. A conjecture by Hertrich, Basu, Di Summa, and Skutella [NeurIPS 2021] states that any ReLU network that exactly represents $F_n$ has at least $\lceil\log_2 (n+1)\rceil$ hidden layers. The conjecture has recently been confirmed for networks with integer weights by Haase, Hertrich, and Loho [ICLR 2023]. We follow up on this line of research and show that, within ReLU networks whose weights are decimal fractions, $F_n$ can only be represented by networks with at least $\lceil\log_3 (n+1)\rceil$ hidden layers. Moreover, if all weights are $N$-ary fractions, then $F_n$ can only be represented by networks with at least $\Omega( \frac{\ln n}{\ln \ln N})$ layers. These results are a partial confirmation of the above conjecture for rational ReLU networks, and provide the first non-constant lower bound on the depth of practically relevant ReLU networks.