Abstract:Generative AI models have revolutionized various fields by enabling the creation of realistic and diverse data samples. Among these models, diffusion models have emerged as a powerful approach for generating high-quality images, text, and audio. This survey paper provides a comprehensive overview of generative AI diffusion and legacy models, focusing on their underlying techniques, applications across different domains, and their challenges. We delve into the theoretical foundations of diffusion models, including concepts such as denoising diffusion probabilistic models (DDPM) and score-based generative modeling. Furthermore, we explore the diverse applications of these models in text-to-image, image inpainting, and image super-resolution, along with others, showcasing their potential in creative tasks and data augmentation. By synthesizing existing research and highlighting critical advancements in this field, this survey aims to provide researchers and practitioners with a comprehensive understanding of generative AI diffusion and legacy models and inspire future innovations in this exciting area of artificial intelligence.
Abstract:There has been significant progress made in the field of autonomous vehicles. Object detection and tracking are the primary tasks for any autonomous vehicle. The task of object detection in autonomous vehicles relies on a variety of sensors like cameras, and LiDAR. Although image features are typically preferred, numerous approaches take spatial data as input. Exploiting this information we present an approach wherein, using a novel encoding of the LiDAR point cloud we infer the location of different classes near the autonomous vehicles. This approach does not implement a bird's eye view approach, which is generally applied for this application and thus saves the extensive pre-processing required. After studying the numerous networks and approaches used to solve this approach, we have implemented a novel model with the intention to inculcate their advantages and avoid their shortcomings. The output is predictions about the location and orientation of objects in the scene in form of 3D bounding boxes and labels of scene objects.