Abstract:We consider the communication of natural language text from a source to a destination over noiseless and character-erasure channels. We exploit language's inherent correlations and predictability to constrain transmission costs by allowing the destination to predict or complete words with potential dissimilarity with the source text. Concretely, our objective is to obtain achievable $(\bar{c}, \bar{s})$ pairs, where $\bar{c}$ is the average transmission cost at the source and $\bar{s}$ is the average semantic similarity measured via cosine similarity between vector embedding of words at the source and those predicted/completed at the destination. We obtain $(\bar{c}, \bar{s})$ pairs for neural language and first-order Markov chain-based small language models (SLM) for prediction, using both a threshold policy that transmits a word if its cosine similarity with that predicted/completed at the destination is below a threshold, and a periodic policy, which transmits words after a specific interval and predicts/completes the words in between, at the destination. We adopt an SLM for word completion. We demonstrate that, when communication occurs over a noiseless channel, the threshold policy achieves a higher $\bar{s}$ for a given $\bar{c}$ than the periodic policy and that the $\bar{s}$ achieved with the neural SLM is greater than or equal to that of the Markov chain-based algorithm for the same $\bar{c}$. The improved performance comes with a higher complexity in terms of time and computing requirements. However, when communication occurs over a character-erasure channel, all prediction algorithms and scheduling policies perform poorly. Furthermore, if character-level Huffman coding is used, the required $\bar{c}$ to achieve a given $\bar{s}$ is reduced, but the above observations still apply.
Abstract:The problem of packing smaller objects within a larger object has been of interest since decades. In these problems, in addition to the requirement that the smaller objects must lie completely inside the larger objects, they are expected to not overlap or have minimum overlap with each other. Due to this, the problem of packing turns out to be a non-convex problem, obtaining whose optimal solution is challenging. As such, several heuristic approaches have been used for obtaining sub-optimal solutions in general, and provably optimal solutions for some special instances. In this paper, we propose a novel encoder-decoder architecture consisting of an encoder block, a perturbation block and a decoder block, for packing identical circles within a larger circle. In our approach, the encoder takes the index of a circle to be packed as an input and outputs its center through a normalization layer, the perturbation layer adds controlled perturbations to the center, ensuring that it does not deviate beyond the radius of the smaller circle to be packed, and the decoder takes the perturbed center as input and estimates the index of the intended circle for packing. We parameterize the encoder and decoder by a neural network and optimize it to reduce an error between the decoder's estimated index and the actual index of the circle provided as input to the encoder. The proposed approach can be generalized to pack objects of higher dimensions and different shapes by carefully choosing normalization and perturbation layers. The approach gives a sub-optimal solution and is able to pack smaller objects within a larger object with competitive performance with respect to classical methods.