Abstract:In modern battlefield scenarios, the reliance on GPS for navigation can be a critical vulnerability. Adversaries often employ tactics to deny or deceive GPS signals, necessitating alternative methods for the localization and navigation of mobile troops. Range-free localization methods such as DV-HOP rely on radio-based anchors and their average hop distance which suffers from accuracy and stability in a dynamic and sparse network topology. Vision-based approaches like SLAM and Visual Odometry use sensor fusion techniques for map generation and pose estimation that are more sophisticated and computationally expensive. This paper proposes a novel framework that integrates landmark-based localization (LanBLoc) with an Extended Kalman Filter (EKF) to predict the future state of moving entities along the battlefield. Our framework utilizes safe trajectory information generated by the troop control center by considering identifiable landmarks and pre-defined hazard maps. It performs point inclusion tests on the convex hull of the trajectory segments to ensure the safety and survivability of a moving entity and determines the next point forward decisions. We present a simulated battlefield scenario for two different approaches (with EKF and without EKF) that guide a moving entity through an obstacle and hazard-free path. Using the proposed method, we observed a percent error of 6.51% lengthwise in safe trajectory estimation with an Average Displacement Error (ADE) of 2.97m and a Final Displacement Error (FDE) of 3.27m. The results demonstrate that our approach not only ensures the safety of the mobile units by keeping them within the secure trajectory but also enhances operational effectiveness by adapting to the evolving threat landscape.
Abstract:Localization in a battlefield environment is increasingly challenging as GPS connectivity is often denied or unreliable, and physical deployment of anchor nodes across wireless networks for localization can be difficult in hostile battlefield terrain. Existing range-free localization methods rely on radio-based anchors and their average hop distance which suffers from accuracy and stability in dynamic and sparse wireless network topology. Vision-based methods like SLAM and Visual Odometry use expensive sensor fusion techniques for map generation and pose estimation. This paper proposes a novel framework for localization in non-GPS battlefield environments using only the passive camera sensors and considering naturally existing or artificial landmarks as anchors. The proposed method utilizes a customcalibrated stereo vision camera for distance estimation and the YOLOv8s model, which is trained and fine-tuned with our real-world dataset for landmark recognition. The depth images are generated using an efficient stereomatching algorithm, and distances to landmarks are determined by extracting the landmark depth feature utilizing a bounding box predicted by the landmark recognition model. The position of the unknown node is then obtained using the efficient least square algorithm and then optimized using the L-BFGS-B (limited-memory quasi-Newton code for bound-constrained optimization) method. Experimental results demonstrate that our proposed framework performs better than existing anchorbased DV-Hop algorithms and competes with the most efficient vision-based algorithms in terms of localization error (RMSE).
Abstract:In this paper, we have proposed a new strategy of using the landmark anchor node instead of a radio-based anchor node to obtain the virtual coordinates (landmarkID, DISTANCE) of moving troops or defense forces that will help in tracking and maneuvering the troops along a safe path within a GPS-denied battlefield environment. The proposed strategy implements landmark recognition using the Yolov5 model and landmark distance estimation using an efficient Stereo Matching Algorithm. We consider that a moving node carrying a low-power mobile device facilitated with a calibrated stereo vision camera that captures stereo images of a scene containing landmarks within the battlefield region whose locations are stored in an offline server residing within the device itself. We created a custom landmark image dataset called MSTLandmarkv1 with 34 landmark classes and another landmark stereo dataset of those 34 landmark instances called MSTLandmarkStereov1. We trained the YOLOv5 model with MSTLandmarkv1 dataset and achieved 0.95 mAP @ 0.5 IoU and 0.767 mAP @ [0.5: 0.95] IoU. We calculated the distance from a node to the landmark utilizing the bounding box coordinates and the depth map generated by the improved SGM algorithm using MSTLandmarkStereov1. The tuple of landmark IDs obtained from the detection result and the distances calculated by the SGM algorithm are stored as the virtual coordinates of a node. In future work, we will use these virtual coordinates to obtain the location of a node using an efficient trilateration algorithm and optimize the node position using the appropriate optimization method.