Abstract:Fine-tuning the Natural Language Processing (NLP) models for each new data set requires higher computational time associated with increased carbon footprint and cost. However, fine-tuning helps the pre-trained models adapt to the latest data sets; what if we avoid the fine-tuning steps and attempt to generate summaries using just the pre-trained models to reduce computational time and cost. In this paper, we tried to omit the fine-tuning steps and investigate whether the Marginal Maximum Relevance (MMR)-based approach can help the pre-trained models to obtain query-focused summaries directly from a new data set that was not used to pre-train the models. First, we used topic modelling on Wikipedia Current Events Portal (WCEP) and Debatepedia datasets to generate queries for summarization tasks. Then, using MMR, we ranked the sentences of the documents according to the queries. Next, we passed the ranked sentences to seven transformer-based pre-trained models to perform the summarization tasks. Finally, we used the MMR approach again to select the query relevant sentences from the generated summaries of individual pre-trained models and constructed the final summary. As indicated by the experimental results, our MMR-based approach successfully ranked and selected the most relevant sentences as summaries and showed better performance than the individual pre-trained models.
Abstract:In Natural Language Processing, multi-document summarization (MDS) poses many challenges to researchers above those posed by single-document summarization (SDS). These challenges include the increased search space and greater potential for the inclusion of redundant information. While advancements in deep learning approaches have led to the development of several advanced language models capable of summarization, the variety of training data specific to the problem of MDS remains relatively limited. Therefore, MDS approaches which require little to no pretraining, known as few-shot or zero-shot applications, respectively, could be beneficial additions to the current set of tools available in summarization. To explore one possible approach, we devise a strategy for combining state-of-the-art models' outputs using maximal marginal relevance (MMR) with a focus on query relevance rather than document diversity. Our MMR-based approach shows improvement over some aspects of the current state-of-the-art results in both few-shot and zero-shot MDS applications while maintaining a state-of-the-art standard of output by all available metrics.