Abstract:In recent years, video conferencing (VC) popularity has skyrocketed for a wide range of activities. As a result, the number of VC users surged sharply. The sharp increase in VC usage has been accompanied by various newly emerging privacy and security challenges. VC meetings became a target for various security attacks, such as Zoombombing. Other VC-related challenges also emerged. For example, during COVID lockdowns, educators had to teach in online environments struggling with keeping students engaged for extended periods. In parallel, the amount of available VC videos has grown exponentially. Thus, users and companies are limited in finding abnormal segments in VC meetings within the converging volumes of data. Such abnormal events that affect most meeting participants may be indicators of interesting points in time, including security attacks or other changes in meeting climate, like someone joining a meeting or sharing a dramatic content. Here, we present a novel algorithm for detecting abnormal events in VC data. We curated VC publicly available recordings, including meetings with interruptions. We analyzed the videos using our algorithm, extracting time windows where abnormal occurrences were detected. Our algorithm is a pipeline that combines multiple methods in several steps to detect users' faces in each video frame, track face locations during the meeting and generate vector representations of a facial expression for each face in each frame. Vector representations are used to monitor changes in facial expressions throughout the meeting for each participant. The overall change in meeting climate is quantified using those parameters across all participants, and translating them into event anomaly detection. This is the first open pipeline for automatically detecting anomaly events in VC meetings. Our model detects abnormal events with 92.3% precision over the collected dataset.
Abstract:The spread of the Red Palm Weevil has dramatically affected date growers, homeowners and governments, forcing them to deal with a constant threat to their palm trees. Early detection of palm tree infestation has been proven to be critical in order to allow treatment that may save trees from irreversible damage, and is most commonly performed by local physical access for individual tree monitoring. Here, we present a novel method for surveillance of Red Palm Weevil infested palm trees utilizing state-of-the-art deep learning algorithms, with aerial and street-level imagery data. To detect infested palm trees we analyzed over 100,000 aerial and street-images, mapping the location of palm trees in urban areas. Using this procedure, we discovered and verified infested palm trees at various locations.