Abstract:Searching for information on the internet and digital platforms to satisfy an information need requires effective retrieval solutions. However, such solutions are not yet available for Tetun, making it challenging to find relevant documents for text-based search queries in this language. To address these challenges, this study investigates Tetun text retrieval with a focus on the ad-hoc retrieval task. It begins by developing essential language resources -- including a list of stopwords, a stemmer, and a test collection -- which serve as foundational components for solutions tailored to Tetun text retrieval. Various strategies are then explored using both document titles and content to evaluate retrieval effectiveness. The results show that retrieving document titles, after removing hyphens and apostrophes without applying stemming, significantly improves retrieval performance compared to the baseline. Efficiency increases by 31.37%, while effectiveness achieves an average gain of 9.40% in MAP@10 and 30.35% in nDCG@10 with DFR BM25. Beyond the top-10 cutoff point, Hiemstra LM demonstrates strong performance across various retrieval strategies and evaluation metrics. Contributions of this work include the development of Labadain-Stopwords (a list of 160 Tetun stopwords), Labadain-Stemmer (a Tetun stemmer with three variants), and Labadain-Avaliad\'or (a Tetun test collection containing 59 topics, 33,550 documents, and 5,900 qrels).
Abstract:The Cranfield paradigm has served as a foundational approach for developing test collections, with relevance judgments typically conducted by human assessors. However, the emergence of large language models (LLMs) has introduced new possibilities for automating these tasks. This paper explores the feasibility of using LLMs to automate relevance assessments, particularly within the context of low-resource languages. In our study, LLMs are employed to automate relevance judgment tasks, by providing a series of query-document pairs in Tetun as the input text. The models are tasked with assigning relevance scores to each pair, where these scores are then compared to those from human annotators to evaluate the inter-annotator agreement levels. Our investigation reveals results that align closely with those reported in studies of high-resource languages.
Abstract:Tetun is one of Timor-Leste's official languages alongside Portuguese. It is a low-resource language with over 932,400 speakers that started developing when Timor-Leste restored its independence in 2002. The media mainly uses Tetun, and more than ten national online newspapers actively broadcast news in Tetun every day. However, since information retrieval-based solutions for Tetun do not exist, finding Tetun information on the internet is challenging. This work aims to investigate and develop solutions that can enable the application of information retrieval techniques to develop search solutions for Tetun. We present a preliminary result of an experiment conducted on the task of ad-hoc retrieval in Tetun.