Abstract:We consider the problem of low probability estimation: given a machine learning model and a formally-specified input distribution, how can we estimate the probability of a binary property of the model's output, even when that probability is too small to estimate by random sampling? This problem is motivated by the need to improve worst-case performance, which distribution shift can make much more likely. We study low probability estimation in the context of argmax sampling from small transformer language models. We compare two types of methods: importance sampling, which involves searching for inputs giving rise to the rare output, and activation extrapolation, which involves extrapolating a probability distribution fit to the model's logits. We find that importance sampling outperforms activation extrapolation, but both outperform naive sampling. Finally, we explain how minimizing the probability estimate of an undesirable behavior generalizes adversarial training, and argue that new methods for low probability estimation are needed to provide stronger guarantees about worst-case performance.
Abstract:How has generative AI impacted the experiences of college students? We study the influence of AI on the study habits, class choices, and career prospects of Harvard undergraduates (n=326), finding that almost 90% of students use generative AI. For roughly 25% of these students, AI has begun to substitute for attending office hours and completing required readings. Half of students are concerned that AI will negatively impact their job prospects, and over half of students wish that Harvard had more classes on the future impacts of AI. We also investigate students' outlook on the broader social implications of AI, finding that half of students are worried that AI will increase economic inequality, and 40% believe that extinction risk from AI should be treated as a global priority with the same urgency as pandemics and nuclear war. Around half of students who have taken a class on AI expect AI to exceed human capabilities on almost all tasks within 30 years. We make some recommendations to the Harvard community in light of these results.