Abstract:Diffusion models have garnered considerable interest in computer vision, owing both to their capacity to synthesize photorealistic images and to their proven effectiveness in image reconstruction tasks. However, existing approaches fail to efficiently balance the high visual quality of diffusion models with the low distortion achieved by previous image reconstruction methods. Specifically, for the fundamental task of additive Gaussian noise removal, we first illustrate an intuitive method for leveraging pretrained diffusion models. Further, we introduce our proposed Linear Combination Diffusion Denoiser (LCDD), which unifies two complementary inference procedures - one that leverages the model's generative potential and another that ensures faithful signal recovery. By exploiting the inherent structure of the denoising samples, LCDD achieves state-of-the-art performance and offers controlled, well-behaved trade-offs through a simple scalar hyperparameter adjustment.
Abstract:Evaluating the efficiency of organizations and branches within an organization is a challenging issue for managers. Evaluation criteria allow organizations to rank their internal units, identify their position concerning their competitors, and implement strategies for improvement and development purposes. Among the methods that have been applied in the evaluation of bank branches, non-parametric methods have captured the attention of researchers in recent years. One of the most widely used non-parametric methods is the data envelopment analysis (DEA) which leads to promising results. However, the static DEA approaches do not consider the time in the model. Therefore, this paper uses a dynamic DEA (DDEA) method to evaluate the branches of a private Iranian bank over three years (2017-2019). The results are then compared with static DEA. After ranking the branches, they are clustered using the K-means method. Finally, a comprehensive sensitivity analysis approach is introduced to help the managers to decide about changing variables to shift a branch from one cluster to a more efficient one.