Abstract:Insect populations are declining globally, making systematic monitoring essential for conservation. Most classical methods involve death traps and counter insect conservation. This paper presents a multisensor approach that uses AI-based data fusion for insect classification. The system is designed as low-cost setup and consists of a camera module and an optical wing beat sensor as well as environmental sensors to measure temperature, irradiance or daytime as prior information. The system has been tested in the laboratory and in the field. First tests on a small very unbalanced data set with 7 species show promising results for species classification. The multisensor system will support biodiversity and agriculture studies.
Abstract:Preserving the number and diversity of insects is one of our society's most important goals in the area of environmental sustainability. A prerequisite for this is a systematic and up-scaled monitoring in order to detect correlations and identify countermeasures. Therefore, automatized monitoring using live traps is important, but so far there is no system that provides image data of sufficient detailed information for entomological classification. In this work, we present an imaging method as part of a multisensor system developed as a low-cost, scalable, open-source system that is adaptable to classical trap types. The image quality meets the requirements needed for classification in the taxonomic tree. Therefore, illumination and resolution have been optimized and motion artefacts have been suppressed. The system is evaluated exemplarily on a dataset consisting of 16 insect species of the same as well as different genus, family and order. We demonstrate that standard CNN-architectures like ResNet50 (pretrained on iNaturalist data) or MobileNet perform very well for the prediction task after re-training. Smaller custom made CNNs also lead to promising results. Classification accuracy of $>96\%$ has been achieved. Moreover, it was proved that image cropping of insects is necessary for classification of species with high inter-class similarity.
Abstract:Mounting evidence in explainability for artificial intelligence (XAI) research suggests that good explanations should be tailored to individual tasks and should relate to concepts relevant to the task. However, building task specific explanations is time consuming and requires domain expertise which can be difficult to integrate into generic XAI methods. A promising approach towards designing useful task specific explanations with domain experts is based on compositionality of semantic concepts. Here, we present a novel approach that enables domain experts to quickly create concept-based explanations for computer vision tasks intuitively via natural language. Leveraging recent progress in deep generative methods we propose to generate visual concept-based prototypes via text-to-image methods. These prototypes are then used to explain predictions of computer vision models via a simple k-Nearest-Neighbors routine. The modular design of CoProNN is simple to implement, it is straightforward to adapt to novel tasks and allows for replacing the classification and text-to-image models as more powerful models are released. The approach can be evaluated offline against the ground-truth of predefined prototypes that can be easily communicated also to domain experts as they are based on visual concepts. We show that our strategy competes very well with other concept-based XAI approaches on coarse grained image classification tasks and may even outperform those methods on more demanding fine grained tasks. We demonstrate the effectiveness of our method for human-machine collaboration settings in qualitative and quantitative user studies. All code and experimental data can be found in our GitHub $\href{https://github.com/TeodorChiaburu/beexplainable}{repository}$.