Abstract:This paper proposes a new combinatorial auction framework for local energy flexibility markets, which addresses the issue of prosumers' inability to bundle multiple flexibility time intervals. To solve the underlying NP-complete winner determination problems, we present a simple yet powerful heterogeneous tri-partite graph representation and design graph neural network-based models. Our models achieve an average optimal value deviation of less than 5\% from an off-the-shelf optimization tool and show linear inference time complexity compared to the exponential complexity of the commercial solver. Contributions and results demonstrate the potential of using machine learning to efficiently allocate energy flexibility resources in local markets and solving optimization problems in general.
Abstract:Explainability of AI models is an important topic that can have a significant impact in all domains and applications from autonomous driving to healthcare. The existing approaches to explainable AI (XAI) are mainly limited to simple machine learning algorithms, and the research regarding the explainability-accuracy tradeoff is still in its infancy especially when we are concerned about complex machine learning techniques like neural networks and deep learning (DL). In this work, we introduce a new approach for complex models based on the co-relation impact which enhances the explainability considerably while also ensuring the accuracy at a high level. We propose approaches for both scenarios of independent features and dependent features. In addition, we study the uncertainty associated with features and output. Furthermore, we provide an upper bound of the computation complexity of our proposed approach for the dependent features. The complexity bound depends on the order of logarithmic of the number of observations which provides a reliable result considering the higher dimension of dependent feature space with a smaller number of observations.
Abstract:The power consumption of households has been constantly growing over the years. To cope with this growth, intelligent management of the consumption profile of the households is necessary, such that the households can save the electricity bills, and the stress to the power grid during peak hours can be reduced. However, implementing such a method is challenging due to the existence of randomness in the electricity price and the consumption of the appliances. To address this challenge, we employ a model-free method for the households which works with limited information about the uncertain factors. More specifically, the interactions between households and the power grid can be modeled as a non-cooperative stochastic game, where the electricity price is viewed as a stochastic variable. To search for the Nash equilibrium (NE) of the game, we adopt a method based on distributed deep reinforcement learning. Also, the proposed method can preserve the privacy of the households. We then utilize real-world data from Pecan Street Inc., which contains the power consumption profile of more than 1; 000 households, to evaluate the performance of the proposed method. In average, the results reveal that we can achieve around 12% reduction on peak-to-average ratio (PAR) and 11% reduction on load variance. With this approach, the operation cost of the power grid and the electricity cost of the households can be reduced.