Abstract:This work proposes a new data-driven model devised to integrate process knowledge into its structure to increase the human-machine synergy in the process industry. The proposed Contextual Mixture of Experts (cMoE) explicitly uses process knowledge along the model learning stage to mold the historical data to represent operators' context related to the process through possibility distributions. This model was evaluated in two real case studies for quality prediction, including a sulfur recovery unit and a polymerization process. The contextual mixture of experts was employed to represent different contexts in both experiments. The results indicate that integrating process knowledge has increased predictive performance while improving interpretability by providing insights into the variables affecting the process's different regimes.
Abstract:Regression problems have been more and more embraced by deep learning (DL) techniques. The increasing number of papers recently published in this domain, including surveys and reviews, shows that deep regression has captured the attention of the community due to efficiency and good accuracy in systems with high-dimensional data. However, many DL methodologies have complex structures that are not readily transparent to human users. Accessing the interpretability of these models is an essential factor for addressing problems in sensitive areas such as cyber-security systems, medical, financial surveillance, and industrial processes. Fuzzy logic systems (FLS) are inherently interpretable models, well known in the literature, capable of using nonlinear representations for complex systems through linguistic terms with membership degrees mimicking human thought. Within an atmosphere of explainable artificial intelligence, it is necessary to consider a trade-off between accuracy and interpretability for developing intelligent models. This paper aims to investigate the state-of-the-art on existing methodologies that combine DL and FLS, namely deep fuzzy systems, to address regression problems, configuring a topic that is currently not sufficiently explored in the literature and thus deserves a comprehensive survey.
Abstract:This paper presents a novel feature selection method based on the conditional mutual information (CMI). The proposed High Order Conditional Mutual Information Maximization (HOCMIM) incorporates high order dependencies into the feature selection procedure and has a straightforward interpretation due to its bottom-up derivation. The HOCMIM is derived from the CMI's chain expansion and expressed as a maximization optimization problem. The maximization problem is solved using a greedy search procedure, which speeds up the entire feature selection process. The experiments are run on a set of benchmark datasets (20 in total). The HOCMIM is compared with eighteen state-of-the-art feature selection algorithms, from the results of two supervised learning classifiers (Support Vector Machine and K-Nearest Neighbor). The HOCMIM achieves the best results in terms of accuracy and shows to be faster than high order feature selection counterparts.