Abstract:We consider the problem of learning low-degree quantum objects up to $\varepsilon$-error in $\ell_2$-distance. We show the following results: $(i)$ unknown $n$-qubit degree-$d$ (in the Pauli basis) quantum channels and unitaries can be learned using $O(1/\varepsilon^d)$ queries (independent of $n$), $(ii)$ polynomials $p:\{-1,1\}^n\rightarrow [-1,1]$ arising from $d$-query quantum algorithms can be classically learned from $O((1/\varepsilon)^d\cdot \log n)$ many random examples $(x,p(x))$ (which implies learnability even for $d=O(\log n)$), and $(iii)$ degree-$d$ polynomials $p:\{-1,1\}^n\to [-1,1]$ can be learned through $O(1/\varepsilon^d)$ queries to a quantum unitary $U_p$ that block-encodes $p$. Our main technical contributions are new Bohnenblust-Hille inequalities for quantum channels and completely bounded~polynomials.
Abstract:We consider the problems of testing and learning an $n$-qubit $k$-local Hamiltonian from queries to its evolution operator with respect the 2-norm of the Pauli spectrum, or equivalently, the normalized Frobenius norm. For testing whether a Hamiltonian is $\epsilon_1$-close to $k$-local or $\epsilon_2$-far from $k$-local, we show that $O(1/(\epsilon_2-\epsilon_1)^{8})$ queries suffice. This solves two questions posed in a recent work by Bluhm, Caro and Oufkir. For learning up to error $\epsilon$, we show that $\exp(O(k^2+k\log(1/\epsilon)))$ queries suffice. Our proofs are simple, concise and based on Pauli-analytic techniques.