Abstract:Analyzing vector fields on the sphere, such as wind speed and direction on Earth, is a difficult task. Models should respect both the rotational symmetries of the sphere and the inherent symmetries of the vector fields. In this paper, we introduce a deep learning architecture that respects both symmetry types using novel techniques based on group convolutions in the 3-dimensional rotation group. This architecture is suitable for scalar and vector fields on the sphere as they can be described as equivariant signals on the 3-dimensional rotation group. Experiments show that our architecture achieves lower prediction and reconstruction error when tested on rotated data compared to both standard CNNs and spherical CNNs.
Abstract:Equipping the rototranslation group $SE(2)$ with a sub-Riemannian structure inspired by the visual cortex V1, we propose algorithms for image inpainting and enhancement based on hypoelliptic diffusion. We innovate on previous implementations of the methods by Citti, Sarti and Boscain et al., by proposing an alternative that prevents fading and capable of producing sharper results in a procedure that we call WaxOn-WaxOff. We also exploit the sub-Riemannian structure to define a completely new unsharp using $SE(2)$, analogous of the classical unsharp filter for 2D image processing, with applications to image enhancement. We demonstrate our method on blood vessels enhancement in retinal scans.