Abstract:In high-energy physics, the increasing luminosity and detector granularity at the Large Hadron Collider are driving the need for more efficient data processing solutions. Machine Learning has emerged as a promising tool for reconstructing charged particle tracks, due to its potentially linear computational scaling with detector hits. The recent implementation of a graph neural network-based track reconstruction pipeline in the first level trigger of the LHCb experiment on GPUs serves as a platform for comparative studies between computational architectures in the context of high-energy physics. This paper presents a novel comparison of the throughput of ML model inference between FPGAs and GPUs, focusing on the first step of the track reconstruction pipeline$\unicode{x2013}$an implementation of a multilayer perceptron. Using HLS4ML for FPGA deployment, we benchmark its performance against the GPU implementation and demonstrate the potential of FPGAs for high-throughput, low-latency inference without the need for an expertise in FPGA development and while consuming significantly less power.
Abstract:Accurate detection of traffic anomalies is crucial for effective urban traffic management and congestion mitigation. We use the Spatiotemporal Generative Adversarial Network (STGAN) framework combining Graph Neural Networks and Long Short-Term Memory networks to capture complex spatial and temporal dependencies in traffic data. We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020. The images are processed to compute a flow metric representing vehicle density, which serves as input for the model. Training is conducted on data from April to November 2020, and validation is performed on a separate dataset from November 14 to 23, 2020. Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates. The detected anomalies include camera signal interruptions, visual artifacts, and extreme weather conditions affecting traffic flow.